首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13773篇
  免费   3031篇
  国内免费   2155篇
化学   8790篇
晶体学   237篇
力学   1902篇
综合类   151篇
数学   1486篇
物理学   6393篇
  2024年   12篇
  2023年   180篇
  2022年   341篇
  2021年   382篇
  2020年   584篇
  2019年   482篇
  2018年   491篇
  2017年   574篇
  2016年   757篇
  2015年   651篇
  2014年   918篇
  2013年   1457篇
  2012年   1035篇
  2011年   982篇
  2010年   823篇
  2009年   881篇
  2008年   930篇
  2007年   974篇
  2006年   852篇
  2005年   750篇
  2004年   669篇
  2003年   621篇
  2002年   464篇
  2001年   441篇
  2000年   388篇
  1999年   316篇
  1998年   305篇
  1997年   229篇
  1996年   222篇
  1995年   219篇
  1994年   209篇
  1993年   159篇
  1992年   133篇
  1991年   92篇
  1990年   66篇
  1989年   68篇
  1988年   59篇
  1987年   41篇
  1986年   41篇
  1985年   32篇
  1984年   29篇
  1983年   8篇
  1982年   25篇
  1981年   8篇
  1980年   14篇
  1979年   13篇
  1978年   8篇
  1973年   5篇
  1971年   3篇
  1957年   5篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
71.
Polyetheretherketone (PEEK) is a thermoplastic material with outstanding properties and high potential for biomedical applications, including hermetic encapsulation of active implantable devices. Different biomedical grade PEEK films with initial degree of crystallinity ranging from 8% to 32% (with or without mineral filling) were inspected. PEEK surfaces were treated with nitrogen RF plasma and the effects on materials crystallinity and self‐bonding were evaluated. In particular, the relationship between auto‐adhesive properties and crystalline content of PEEK before and after plasma treatment was examined. PEEK samples showed different bonding strength depending on their degree of crystallinity, with higher self‐bonding performance of mineral‐filled semi‐crystalline films. XRD did not show any modification of the PEEK microstructure as a result of plasma treatment, excluding a significant influence of crystallinity on the self‐bonding mechanisms. Nevertheless, plasma surface treatment successfully improved the self‐bonding strength of all the PEEK films tested, with larger increase in the case of semi‐crystalline unfilled materials. This could be interpreted to the increase in chain mobility that led to interfacial interpenetration of the amorphous phase.  相似文献   
72.
The identification of acid and nonacid species at the external surface of zeolites remains a major challenge, in contrast to the extensively-studied internal acid sites. Here, it is shown that the synthesis of zeolite ZSM-5 samples with distinct particle sizes, combined with solid-state NMR and computational studies of trimethylphosphine oxide (TMPO) adsorption, provides insight into the chemical species on the external surface of the zeolite crystals. 1H–31P HETCOR NMR spectra of TMPO-loaded zeolites exhibit a broad correlation peak at δP ∼35–55 ppm and δH ∼5–12 ppm assigned to external SiOH species. Pore-mouth Brønsted acid sites exhibit 31P and 1H NMR resonances and adsorption energies close to those reported for internal acid sites interacting with TMPO. The presence of an external tricoordinate Al-Lewis site interacting strongly with TMPO is suggested, resulting in 31P resonances that overlap with the peaks usually ascribed to the interaction of TMPO with Brønsted sites.  相似文献   
73.
74.
In this work, a new hybrid material (C5H6N2Cl)2[FeCl4].Cl abbreviated (CAP)2[FeCl4].Cl was prepared using room temperature slow evaporation technique. The X-ray diffraction analysis revealed that the compound is crystallized in the centrosymmetric space group P21/c of the monoclinic system. The crystallographic network consists of an Fe(III) ion located on an inversion center and coordinated by four chlorine, isolated Cl and two (CAP)+ protonated cations linked by N–H...Cl and C–H...Cl hydrogen bonds to form a zero-dimensional network. Hirshfeld surface analysis was used to analyze intermolecular interactions present in the crystal structure. The vibrational properties were inspected by means of Infra-Red absorption and Raman diffusion spectroscopy techniques. In addition, theoretical calculations based on the DFT/B3LYP/LanL2DZ method and the time-dependent density functional theory (TD–DFT) were performed in order to gain more information and help in the examination of over-all properties of the title compound. Good and interesting experimental findings were presented and good consistency was found with the calculated results.  相似文献   
75.
The smoothed particle hydrodynamics (SPH) method is one of the powerful Lagrangian tools for modeling free surface flows. However, it suffers from particle disorder, which leads to interpolation and numerical errors. To overcome this problem, several techniques have been introduced until now, among which the particle shifting technique (PST) based on Fick's law is an efficient one. The current form of this method needs tuning parameters to fulfill numerical stability criteria. In this study, to eliminate calibration factors, a new shifting coefficient is derived theoretically based on particle positions before and after shifting, regardless of other parameters such as velocity, pressure, time step intervals, etc. The only required input is particle positions, and the main concern is conserving particle densities in their updated positions. In addition to the proposed PST, a new distribution index (DI) is introduced for measuring the spatial uniformity of particles. Furthering the research, some novel treatments are also studied to improve particle movements near free surface boundary. The proposed idea is only assessed for ISPH method in this study, and its performance in other SPH schemes needs more investigations. Following this innovative method, it is validated by modeling different cases including dam break flow, paddle movement, and elliptical water drop. In all cases, particle arrangements have been improved by means of the modified shifting method. In that sense, good agreements between simulation results with experimental data, analytical solutions, and other numerical methods approve the ability of the developed method in simulating free surface flows.  相似文献   
76.
The two single‐enantiomer phosphoric triamides N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(S)‐(−)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(S)‐(−)‐(C6H5)CH(CH3)NH]2P(O), denoted L‐1 , and N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis[(R)‐(+)‐α‐methylbenzyl]phosphoric triamide, [2,6‐F2‐C6H3C(O)NH][(R)‐(+)‐(C6H5)CH(CH3)NH]2P(O), denoted D‐1 , both C23H24F2N3O2P, have been investigated. In their structures, chiral one‐dimensional hydrogen‐bonded architectures are formed along [100], mediated by relatively strong N—H…O(P) and N—H…O(C) hydrogen bonds. Both assemblies include the noncentrosymmetric graph‐set motifs R22(10), R21(6) and C22(8), and the compounds crystallize in the chiral space group P1. Due to the data collection of L‐1 at 120 K and of D‐1 at 95 K, the unit‐cell dimensions and volume show a slight difference; the contraction in the volume of D‐1 with respect to that in L‐1 is about 0.3%. The asymmetric units of both structures consist of two independent phosphoric triamide molecules, with the main difference being seen in one of the torsion angles in the OPNHCH(CH3)(C6H5) part. The Hirshfeld surface maps of these levo and dextro isomers are very similar; however, they are near mirror images of each other. For both structures, the full fingerprint plot of each symmetry‐independent molecule shows an almost asymmetric shape as a result of its different environment in the crystal packing. It is notable that NMR spectroscopy could distinguish between compounds L‐1 and D‐1 that have different relative stereocentres; however, the differences in chemical shifts between them were found to be about 0.02 to 0.001 ppm under calibrated temperature conditions. In each molecule, the two chiral parts are also different in NMR media, in which chemical shifts and P–H and P–C couplings have been studied.  相似文献   
77.
We have developed a reliable, fast, and highly sensitive analytical method utilizing dispersive liquid–liquid microextraction and gold nanoparticles probes for ziram (zinc bis(dimethyldithiocarbamate)) determination. The method is based on the in situ formation of gold nanoparticles in carbon tetrachloride as an organic phase. It was found that the trace levels of ziram influenced the formation of gold nanoparticles, leading to absorbance change of a sedimented phase. The results of the colorimetric ziram determination were in the concentration range of 0.12–2.52 ng/mL with a limit of detection of 0.06 ng/mL. The formation of the stable and dispersed gold nanoparticles in the organic phase provides a good precision for dispersive liquid–liquid microextraction method, resulting in the relative standard deviation of 3.8 and 1.2% for 0.56 and 1.58 ng/mL of ziram, respectively. This method has been successfully used for the ziram determination in samples of well and river water, soil, potato, carrot, wheat, and paddy soil.  相似文献   
78.
Polyamide 12 (PA12) is used in a variety of applications when low moisture absorption, good dimensional stability, and toughness are required. Polyamide 12 is one of the polymers most frequently employed to fabricate angioplasty balloon catheters; however, its high hydrophobicity and chemical inertness require the application of coatings to make its surface more hydrophilic and biocompatible. In this work, an alternative method, based on the photochemical reaction of PA12 with a hydrophilic aromatic azide, was developed. Static and dynamic contact angle measurements evidenced that the surface modification process was able to improve PA12 wettability and that the effects were retained even after 12 months from surface treatment. Polyamide 12 modification resulted in an increase of its surface free energy, as evaluated by the van Oss, Good, and Chaudhury method. X‐ray photoelectron spectroscopy confirmed the presence of the aromatic azide on PA12 surface. Finally, compliance tests showed that the modification process did not reduce the mechanical performance of balloons.  相似文献   
79.
80.
In this article, we prove the existence and multiplicity of non-trivial solutions for an indefinite fractional elliptic equation with magnetic field and concave–convex nonlinearities. Our multiplicity results are based on studying the decomposition of the Nehari manifold.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号